python
normalize json
from pandas.io.json import json_normalize
json_normalize([{"a":{"b":1}}])
pandas
res = CONN.execute("SELECT * FROM information_schema.TABLES")
df = pd.DataFrame(res.fetchall(), columns=res.keys())
matplotlib
import matplotlib.pyplot as plt
update and return a map
a.update(b=(1 + a.get("b", 0))) or a
reduce
from functools import reduce
reduce(lambda current, value : current.update({value: current[value] + 1} ) or current, res2, defaultdict(int))
group_by
from itertools import groupby
mysql
pip install mysql-connector-python
engine = create_engine("mysql+mysqlconnector://127.0.0.1/phrase_test")
postgres
pip install psycopg2-binary
gzip
with gzip.open("out.txt.gz", mode="rt") as f:
f.write("foo\n")
f.write("bar\n")
f.write("baz\n")
json
with gzip.open("out.json.gz", mode="wt") as f:
payload = {"foo": "bar", "baz": "badass"}
json.dump(payload, f)
time delta
from datetime import timedelta
delta = timedelta(days=365) # or seconds, microseconds
print("%.06f" % (delta.total_seconds()))
datetime.now().isoformat()
calendar